Archives

Recovery Potential Of The World’s Coral Reef Fishes

Fishing is the primary source of reduced reef function globally. Marine reserves are a critical tool to help fish populations recover, however, there are no benchmarks to determine if the protection is effective, or whether a reserve has recovered enough to be fished again. By studying remote and marine protected areas, they estimate how many fish would be on a coral reef without fishing, and how long it should take newly protected areas to recover. This helps to assess the impact of reef fisheries, and make informed management decisions that include timeframes for recovery.

Specifically, this paper presents the first empirical estimate of coral reef fisheries recovery potential, compiling data from 832 coral reefs across 64 localities (countries and territories. The authors estimate the expected density of reef fish on unfished reefs; quantify the rate of reef fish biomass recovery in well-enforced marine reserves; characterize the state of reef fish communities within fished and managed areas; predict the time required to recover biomass and ecosystem functions; and explore the potential returns in biomass and function using off-reserve management throughout the broader reefscape. The research team studied the fish biomass on coral reefs around the world and discovered that near-pristine reefs contain 1,000 kg of fish per hectare. Using this figure as a benchmark, they found that 83% of fished reefs have lost more than half of their fish biomass (volume of fish).

The authors discuss how reef fish populations were better off when fishing activities were restricted (e.g., including limitations on the species that could be caught, the gears that could be used, and controlled access rights). The authors determined that once protected, fished reefs take about 35 years to recover, while heavily depleted reefs take almost 60 years. Although the influence of marine reserves can be detected within several years, this global analysis demonstrated that full recovery of reef fish biomass takes decades to achieve. Importantly, this suggests that most marine reserves implemented in the past 10–20 years, will require many more years to achieve their recovery potential. This has important implications for managing expectations of MPAs and also reinforces the need for continued, effective protection and consideration of other viable management options. The authors also found that in reef areas where MPAs cannot be implemented, a range of fisheries can have substantial effects on fish functional groups that support important reef processes.

Author: MacNeil, M.A., N.A.J. Graham, J.E. Cinner, S.K. Wilson, I.D. Williams, J. Maina, S. Newman, A.M. Friedlander, S. Jupiter, N.V.C. Polunin, and T.R. McClanahan
Year: 2015
View Abstract
Email for the full article: resilience@tnc.org

Nature 520: 341-344. doi:10.1038/nature14358

Share on FacebookTweet about this on TwitterEmail this to someone

Using Wastewater Treatment Technologies to Reduce Nutrient Pollution Impacts on Coral Reefs

Watch on YouTube

March 11, 2015

Jim Bays, Technology Fellow at CH2M HILL discusses wastewater treatment technologies ranging from low-tech onsite treatment to large system level upgrades that improve public health and mitigate nutrient pollution impact to coral reefs and sensitive marine ecosystems. Case histories from small communities, resorts and large cities in coral reef areas are shared. Click here for resources from the presentation.

Share on FacebookTweet about this on TwitterEmail this to someone

Persistence and Change in Community Composition of Reef Corals through Present, Past and Future Climates

This study looked at long-term data from fossil and modern coral reefs to test for variation among coral genera over time, both in rates and directions of change in abundance. Data was synthesized from seven extant reefs, creating 78 trajectories of changing coral cover by genus in the Caribbean and 153 trajectories in the Indo-Pacific. Fossil records from 70 localities from late Miocene to late Pleistocene were used to understand the temporal nature of changes affecting current coral reef communities. A model was developed to evaluate potential coral reef composition of the future under increased thermal stress predicted by climate change. The model suggested that coral mortality and adult coral growth were the most important ecological indicators of coral persistence; thermal tolerance became increasingly important when looking at severe climate change. Overall, corals most likely to persist in future climate scenarios are characterized by rapid growth and moderate mortality but changes in the genera of coral composition in the future are likely to occur.

Author: Edmunds, P.J., M. Adjeroud, M.L. Baskett, I.B. Baums, A.F. Budd, et al.
Year: 2014
View Full Article

PLoS ONE 9(10): e107525. doi: 10.1371/journal.pone.0107525

Share on FacebookTweet about this on TwitterEmail this to someone

New and improved Network Forum

The Reef Resilience Network has launched a new and improved online discussion forum!

Now part of the Reef Resilience website, this interactive online community is a place where coral reef managers and practitioners from around the world can connect and share with others to better manage marine resources.

If you work to protect, manage, or promote coral reefs please join the conversation: www.reefresilience.org/network

Share on FacebookTweet about this on TwitterEmail this to someone

New Reef Resilience Online Course Launched

The new online course Advanced Studies in Coral Reef Resilience is designed to provide coral reef managers and practitioners in-depth guidance on managing for resilience. This free course incorporates new science, case studies, and management practices described in the Reef Resilience Toolkit.

The course includes six modules that discuss local and global stressors affecting coral reefs, guidance for identifying coral reef resilience indicators, design principles for resilient MPA networks, methods for implementing resilience assessments, and important communication tools for managers. Course participants can choose to complete any or all lessons within course modules. Read more.

Share on FacebookTweet about this on TwitterEmail this to someone

Meta-Analysis Indicates Habitat-Specific Alterations to Primary Producer and Herbivore Communities in Marine Protected Areas

A recent global quantitative review and meta-analysis was conducted on the effects of MPAs on coral reef herbivores and primary producers to support management decisions. Based on criteria for the meta-analysis, which included only well-enforced no-take MPAs, 41 individual publications representing 57 MPAs worldwide were included in the study. The authors found that within MPAs, macroalgal cover and sea urchin density were significantly lower as compared to fished areas. The relationship between macroalgae cover and herbivores was also explored. MPAs with higher populations of herbivorous fishes had significantly lower macroalgal cover. The authors conclude that the community response to MPAs is highly variable. Management implications include protecting key echinoid predators which appear crucial to the recovery of reefs. Also, actively managing grazers and predators should be an integral component of MPA design.

Author: Gilby, B.L. and T. Stevens
Year: 2014
View Full Article

Global Ecology and Conservation 2: 289-299. doi: 0.1016/j.gecco.2014.10.005

Share on FacebookTweet about this on TwitterEmail this to someone

Developing Marine Protected Area Networks in the Coral Triangle: Good Practices for Expanding the Coral Triangle Marine Protected Area System

The authors describe six case studies of marine protected area (MPA) networks in the Coral Triangle region that differ in scale and the approach taken to establish the networks. These are:

  • Nusa Penida in Indonesia
  • Tun Mustapha Park in Malaysia
  • Kimbe Bay in Papua New Guinea
  • Verde Island Passage in the Philippines
  • The Lauru Ridges to Reefs Protected Area Network in Choiseul, Solomon Islands
  • Nino Konis Santana Park in Timor Leste

Through a synthesis of these case studies, common themes underlying successful outcomes were generated. These are:

  • Multi-stakeholder and cross-level management institutions: because ecological and institutional boundaries rarely overlap, multi-scale management and governance are needed for effective management
  • Integrated scientific information and local knowledge and traditions: MPA networks designed using scientific information and local knowledge that include stakeholder involvement typically have better compliance and community ownership
  • Building capacity for local responsibility and leadership: while all MPAs in the case studies above had the involvement of nongovernmental organizations (NGOs), technical support should build the capacity for local management and leadership for long-term success
  • Multiple-use zoning to balance objectives: this flexible approach allows multiple objectives of the MPA network to be met for a broad range of stakeholder interests
  • Learning networks: Dissemination of lessons learned and best practices for MPA networks, and support networks are needed to share experiences and facilitate effective management

Author: Weeks, R., P.M. Aliño, S. Atkinson, P. Beldia II, A. Binson, W.L. Campos, R. Djohani, A.L. Green, R. Hamilton, V. Horigue, R. Jumin, K. Kalim, A. Kasasiah, J. Kereseka, C. Klein, L. Laroya, S. Magupin, B. Masike, C. Mohan, R.M. Da Silva Pinto, A. Vave-Karamui, C. Villanoy, M. Welly, and A.T. White
Year: 2014
View Abstract
Email for the full article: resilience@tnc.org

Coastal Management 42(2): 183-205. doi: 10.1080/08920753.2014.877768

Share on FacebookTweet about this on TwitterEmail this to someone

Contrasting Patterns of Coral Bleaching Susceptibility in 2010 Suggest an Adaptive Response to Thermal Stress

Guest et al. (2012) examine the bleaching and mortality responses of corals at sites in Southeast Asia with different thermal histories during a large-scale bleaching event in 2010 to explore whether corals have the capacity to adapt to elevated sea temperatures. They also assess whether reefs in more thermally variable environments bleach less severely during heat stress events. They found increases in thermal tolerance on reefs that previously experienced major bleaching with the most susceptible species exhibiting the greatest increases in thermal tolerance. They also demonstrated that corals generally bleached less severely at locations where temperature variability has been greater and warming rates lower over the last 60 years. These results are important because they suggest that locations that are more resistant to bleaching can be identified from analyzing their thermal histories, and such sites could be considered priorities for protection in marine protected area (MPAs). These results add to a growing body of evidence suggesting that the capacity for adaptation and acclimatization in corals has been underestimated which is good news for coral reefs.

Author: Guest, J.R., A.H. Baird, J.A. Maynard, E. Muttaqin, A.J. Edwards, S.J. Campbell, K. Yewdall, Y.A. Affendi, and L.M. Chou
Year: 2012
View Full Article

PLoS ONE 7(3): e33353. doi:10.1371/journal.pone.0033353

Share on FacebookTweet about this on TwitterEmail this to someone

How Are Our MPAs Doing? Challenges in Assessing Global Patterns in Marine Protected Area Performance

Marine protected areas (MPAs) are established for a variety of reasons including: protecting marine biodiversity and habitats from degradation, replenishing depleted fish populations, regulating tourism and recreation, accommodating conflicting resource uses, and enhancing the welfare of local communities. In some cases effectively managed MPAs can lead to poverty alleviation, while in others, they may adversely affect local communities. This study utilized biophysical, social, and governance indicators from a commonly applied guidebook, How is your MPA doing?, to explore trends across 24 MPAs worldwide. The objective was to examine protected area goals and objectives and explore the possibility of using site-level data to understand how MPAs might be more effectively established and managed.

The authors found that monitoring is skewed toward biophysical goals and objectives. All five top MPA goals and all 20 of the top MPA objectives most commonly assessed by managers were biophysical. The authors suggest that this may be because biophysical goals and objectives can be assessed using few indicators, compared to governance or socioeconomic goals and objectives which require more indicators to assess. In addition, the authors found that smaller MPAs were correlated with better performance. The authors call for increased efforts to build awareness and capacity to conduct social science research to ensure that managers have the necessary skills to effectively assess the social consequences of MPA establishment. The authors also emphasize the importance of site-specific factors in driving MPA performance. They suggest that future MPA performance guidance include indicators to assess the effects of MPA networks, based on the idea that MPAs are likely to function better as part of a network than on their own. They also reinforce the need for greater emphasis on measuring the social impacts of MPAs to more accurately assess MPA performance. With improved global MPA datasets, policymakers and practitioners in the conservation and development community will be better able to understand what governance structures and resource use patterns are linked to stronger MPA performance.

Author: Fox, H.E., J.L. Holtzman, K.M. Haisfield, C.G. McNally, G.A. Cid, M.B. Mascia, J.E. Parks, and R.S. Pomeroy
Year: 2014
View Abstract
Email for the full article: resilience@tnc.org

Coastal Management 42: 207–226. doi: 10.1080/08920753.2014.904178

Share on FacebookTweet about this on TwitterEmail this to someone