Archives

Behind-the-scenes on Project REGENERATE

Photo © Project REGENERATE

In recent years, the IUCN has increased its engagement in the Maldives, a group of islands in the Indian Ocean, with the development of the IUCN Maldives Marine Projects program, which aims to support the Government in addressing the environmental priorities and challenges that the Maldives faces. Project REGENERATE (Reefs Generate Environmental and Economic Resilience in Atoll  Ecosystems), a major project under this program, supports the sustainable management of coastal resources in the Maldives, particularly coral reefs, in order to build economic, social, and environmental resilience to the adverse effects of climate change. One major research activity of the project is a two-leg scientific expedition to investigate coral reef biodiversity and resilience and provide baseline ecological data for the Maldives.

The first leg of the expedition, in collaboration with the University of Queensland and the Catlin Seaview Survey, employed high tech cameras to collect data from eight atolls. The second leg of the research cruise was comprised of 17 researchers, representing  universities, research and environmental institutions from around the world, and focused on North Ari (Alifu Alifu) Atoll in the Maldives. The team documented fish abundance and species structure, benthic composition, coral population demographics, coral bleaching and disease, mobile invertebrate species, and foramnifera health. A key strategy of the project was to build local capacity by training citizen scientists in national monitoring protocols. Citizen scientists from Alifu Alifu Atoll, the capital Male and as far afield as Colombo, Sri Lanka, joined the research team, received training, and helped to collect data for their home reef. The data collected will help to assess the resilience of the coral reef ecosystem. It will also help to assess how population density affects reef health. Such assessments address important data gaps in the region and are critical in a country highly vulnerable to climate change, and also dependent on its world-renowned coral reefs and the resources that they provide. This information, combined with data from future monitoring assessments, will inform policy and management decisions in the region.

The Reef Resilience Team got a “behind-the-scenes” glimpse into this expedition from two crew members: Zach Caldwell, The Nature Conservancy’s Dive Safety Officer, and Amir Schmidt, IUCN Maldives Marine Projects Field Officer.

Reef Resilience (RR): Can you tell us a little bit about how this project came about?

Zach Caldwell (ZC): There was a predicted sea temperature rise this year in the waters around the Maldives. Because we know that corals are more susceptible to bleaching and disease when thermally stressed, this created a timely opportunity to address pressing research questions on the resilience of corals in the Maldives. There seems to be quite a void in quantitative information on coral reefs in the Maldives, so the approach was to organize a comprehensive team to ensure that all necessary information was collected to answer the questions being asked.

RR: What was your role in the expedition?

Photo © Project REGENERATE

ZC: I was a member of the fish team. I worked directly with three other researchers to count and size reef fishes found along our transect line. I also worked directly with Scripps Institution of Oceanography to collect benthic data. We set up 10m x 10m plots on the seafloor and took a sequence of photos of these plots. The photos were later stitched together to make a detailed map of the sea floor. This provides us with a large permanent record of the community structure in that area at that time.  We complimented these data with fish surveys to compare fish abundance with bottom composition.

I conduct similar coral reef and fish surveys in Hawai‘i to provide our community partners with information on the health of their reefs to help inform community-based management. The Nature Conservancy Hawai‘i is currently working with 19 community partners across the State. As a research team, it’s important that we stay up-to-date on the latest monitoring protocols and also contribute to collaborative research projects like Project REGENERATE.

Amir Schmidt (AS): I had three roles to play during the expedition. My first duty was to make sure that the research team was sampling the right places at the right times. With dozens of divers and three dives per day, we had to stick to a tight time schedule! My second role was to oversee the citizen science component of the expedition. This included four local citizen scientists – two people from an environmental NGO, an assessor for Green Fins Maldives, and a representative from the Environmental Protection Agency Maldives – who helped to collect data on fish and benthic life forms, such as corals, sponges, and algae during the whole expedition and eleven community members and resort staff who joined the cruise for a day, receiving on board and in water training on monitoring protocols focused on benthic communities.

RR: How did the idea  to include local community members and scientists in the expedition come about, i.e. what was your motivation for this aspect of the project?

Training

Photo © Project REGENERATE

AS: Our goal for including community members in the expedition was to identify who locally is interested in coral reef monitoring, in order to build a network of citizen scientists to monitor our marine resources and later use this information to create a management plan.

Usually we go to the islands and conduct monitoring workshops there. This time, we took advantage of the opportunity to host the workshops on the research vessel. In addition to the training, the community members got to see what daily life on a research expedition looks like. The Maldivian island communities are small and because transportation in between them is limited, interactions of this kind are extremely rare. I think it was interesting for both the community members and researchers, and helped them to see the bigger picture.

Log on to the Network Forum to read the rest of the interview.

Share on FacebookTweet about this on TwitterEmail this to someone

We’re excited to announce a new coral reef fisheries module!

Coral reef fishery managers have spoken up, and we heard you! TNC’s Global Fisheries and Reef Resilience have teamed up to bring you the latest coral reef fisheries science and management strategies.

The new Coral Reef Fisheries Module was created through generous funding from partners including WildAid and covers key topics including coral reef fisheries stock assessment methods, tools for managing fisheries, and surveillance and enforcement systems.

You will also find coral reef fisheries case studies describing management challenges and actions taken and helpful summaries on the importance of reef fisheries and what you can do to boost their resilience. Now DIVE IN to explore!

If you are interested in adding a section to the new reef fisheries module, or have comments, questions, or suggestions about Reef Resilience, visit www.reefresilience.org or reach out to the Reef Resilience Team.

Share on FacebookTweet about this on TwitterEmail this to someone

Evaluating Taboo Trade-Offs In Ecosystems Services And Human Well-Being

In a new paper, published in the Proceedings of the National Academy of Sciences, researchers analyzed the various trade-offs involved when fisheries managers in Kenya make decisions about the sustainability of coral reef fisheries. The authors suggest that resource managers typically focus on ‘win-wins’, such as the gains in profitability and conservation that can be achieved by reducing overfishing, but may overlook the tradeoffs with human wellbeing, especially of the poor. The paper explores the challenge of including ‘taboo tradeoffs’ in conservation decision-making and planning. Such tradeoffs include the impact on the livelihoods of poor women who earn a living as fish traders. For example, women who rely on the cheap fish produced by heavy fishing pressure may lose out if conservation strategies were implemented that required the fishery to produce larger, more valuable fish. Although the strategies would improve fishery profits, the impacts to these women were ignored by decision makers. The authors found that despite an apparent win-win between conservation and profitability at the aggregate scale, food production, employment, and well-being of marginalized stakeholders were differentially influenced by management decisions leading to trade-offs. These tradeoffs may result in the exclusion of key issues from decision-making, which can result in difficulties implementing policies and management strategies. The authors call for a new approach that explicitly recognizes the different values and hidden tradeoffs involved in decision-making for conservation and resource management. They suggest that a participatory modeling and scenarios approach has the potential to increase awareness of such trade-offs, promote discussion of what is acceptable, and potentially identify and reduce obstacles to management compliance

Author: Daw, T.M. , S. Coulthard, W.W. L. Cheung, K. Brown, C. Abunge, D. Galafassi, G.D. Peterson, T.R. McClanahan, J.O. Omukoto, and L. Munyi
Year: 2015
View Full Article

PNAS 112(22): 6949–6954. doi: 10.1073/pnas.1414900112

Share on FacebookTweet about this on TwitterEmail this to someone

Sewage Pollution: Mitigation Is Key For Coral Reef Stewardship

In this new paper, the authors highlight the importance of addressing sewage, a global stressor affecting coral reefs. The authors note that of 112 coral reef geographies, 104 have documented sewage contamination problems, with the majority documenting direct ocean discharge. Despite this threat, the authors find that scientists and conservationists have paid less attention to understanding and abating sewage impacts on coral reefs, as compared to other stressors like overfishing. They suggest that reasons for this include the challenges of dealing with a large-scale diffuse threat, the diversity of pollutants involved, the high cost of water-treatment facilities, and bureaucracy. The authors explore how sewage discharge is often mischaracterized as a single stressor in coral reef management and suggest that it is important to recognize that sewage is a conglomerate of many potentially toxic and distinct stressors, including freshwater, inorganic nutrients, pathogens, endocrine disrupters, suspended solids, sediments, heavy metals, and other toxins. The authors state that mitigating the threat of sewage pollution will require: 1) understanding tolerance thresholds that corals have to sewage exposure, evaluating individual contaminants, additive, and synergistic combinations of contaminants; 2) quantifying the spatial extent and magnitude of the sewage discharge problems; and, most importantly, (3) testing both proactive and reactive strategies that can be employed to reduce the adverse impacts of human sewage in tropical coastal waters.

Author: Wear, S.L. and R. Vega-Thurber
Year: 2015
View Full Article

Annuals of the New York Academy of Sciences: 1–16. doi: 10.1111/nyas.12785

Share on FacebookTweet about this on TwitterEmail this to someone

Recovery Potential Of The World’s Coral Reef Fishes

Fishing is the primary source of reduced reef function globally. Marine reserves are a critical tool to help fish populations recover, however, there are no benchmarks to determine if the protection is effective, or whether a reserve has recovered enough to be fished again. By studying remote and marine protected areas, they estimate how many fish would be on a coral reef without fishing, and how long it should take newly protected areas to recover. This helps to assess the impact of reef fisheries, and make informed management decisions that include timeframes for recovery.

Specifically, this paper presents the first empirical estimate of coral reef fisheries recovery potential, compiling data from 832 coral reefs across 64 localities (countries and territories. The authors estimate the expected density of reef fish on unfished reefs; quantify the rate of reef fish biomass recovery in well-enforced marine reserves; characterize the state of reef fish communities within fished and managed areas; predict the time required to recover biomass and ecosystem functions; and explore the potential returns in biomass and function using off-reserve management throughout the broader reefscape. The research team studied the fish biomass on coral reefs around the world and discovered that near-pristine reefs contain 1,000 kg of fish per hectare. Using this figure as a benchmark, they found that 83% of fished reefs have lost more than half of their fish biomass (volume of fish).

The authors discuss how reef fish populations were better off when fishing activities were restricted (e.g., including limitations on the species that could be caught, the gears that could be used, and controlled access rights). The authors determined that once protected, fished reefs take about 35 years to recover, while heavily depleted reefs take almost 60 years. Although the influence of marine reserves can be detected within several years, this global analysis demonstrated that full recovery of reef fish biomass takes decades to achieve. Importantly, this suggests that most marine reserves implemented in the past 10–20 years, will require many more years to achieve their recovery potential. This has important implications for managing expectations of MPAs and also reinforces the need for continued, effective protection and consideration of other viable management options. The authors also found that in reef areas where MPAs cannot be implemented, a range of fisheries can have substantial effects on fish functional groups that support important reef processes.

Author: MacNeil, M.A., N.A.J. Graham, J.E. Cinner, S.K. Wilson, I.D. Williams, J. Maina, S. Newman, A.M. Friedlander, S. Jupiter, N.V.C. Polunin, and T.R. McClanahan
Year: 2015
View Abstract
Email for the full article: resilience@tnc.org

Nature 520: 341-344. doi:10.1038/nature14358

Share on FacebookTweet about this on TwitterEmail this to someone

Biogeography And Change Among Regional Coral Communities Across The Western Indian Ocean

Following the major 1998 coral bleaching event between 2004 and 2011, 291 coral sites from 11 Western Indian Ocean (WIO) countries were surveyed to evaluate regional biogeographic patterns of coral communities along latitudinal gradients and in relation to biogeography and fisheries management. Coral reef abundance, biodiversity, and susceptibility to bleaching were assessed during that period to develop an extensive database on coral reef communities and researchers aimed to evaluate possible impacts such as fishing and fishing closures on reef patterns and status. Patterns show that coral communities are influenced by large-scale interactions between biogeographic factors and temperature abnormalities but not so much by fisheries management. All coral reefs in the WIO are experiencing climate change and coral bleaching since the early 1980s, but at variable rates, timing and scale depending on the geography. The region was characterized by a complexity of a large number of significant interactions among variables tested. The northern Mozambique Channel demonstrated the strongest signs of resilience to climate disturbances.

Author: McClanahan, T.R., M. Atewberhan, E.S. Darling, N.A.J. Graham, and N.A. Muthiga
Year: 2014
View Full Article

PLoS ONE 9(4): e93385. doi: 10.1371/journal.pone.0093385

Share on FacebookTweet about this on TwitterEmail this to someone

Towards A Network of Locally Managed Marine Areas (LMMAs) In The Western Indian Ocean

This study describes the increasing use of community based management of marine resources in the Western Indian Ocean (WIO) and assesses locally managed marine areas (LMMAs), producing the first regional inventory. LMMAs are managed for sustainable use and utilize a combination of management tools; in this paper their geography, number, size, and governance structure were described and they were compared to areas managed by government initiatives. A synthesis of the 74 coral-related marine protected areas (MPAs) in eleven countries/territories within the WIO found only 29.6% to be ecologically effective.  Approximately 7% of the regions’ continental shelf receives protection, with 76% of reefs at risk from local threats, the most predominant of which was overfishing. This study also evaluated the potential for MPAs to contribute to the Convention on Biodiversity Target protecting 10% of coastal and marine ecosystems by 2020. Overall, LMMAs in 4 of the 11 countries/territories surveyed have the legal structures to support community-based management, which is lacking in the remaining 7 countries/territories. For LMMAs to be more effective, authors suggest the establishment of a network for LMMA practitioners in the region.

Author: Rocliffe, S., S. Peabody, M. Samoilys, and J.P. Hawkins
Year: 2014
View Full Article

PLoS ONE 9(7): e103000. doi: 10.1371/journal.pone.0103000

Share on FacebookTweet about this on TwitterEmail this to someone

Using Wastewater Treatment Technologies to Reduce Nutrient Pollution Impacts on Coral Reefs

Watch on YouTube

March 11, 2015

Jim Bays, Technology Fellow at CH2M HILL discusses wastewater treatment technologies ranging from low-tech onsite treatment to large system level upgrades that improve public health and mitigate nutrient pollution impact to coral reefs and sensitive marine ecosystems. Case histories from small communities, resorts and large cities in coral reef areas are shared. Click here for resources from the presentation.

Share on FacebookTweet about this on TwitterEmail this to someone

Community Change and Evidence For Variable Warm-Water Temperature Adaptation Of Corals In Northern Male Atoll, Maldives

This study is a descriptive analysis of coral reef communities in North Male, Maldives seven years after the major 1998 coral bleaching event with the goal of evaluating ongoing changes and ability for adaptation. The study looked at coral community composition, recruitment community, evidence for recovery and responses to corals to a subsequent thermal anomaly in 2005. Eleven shallow reef areas consisting of hard calcium carbonate were assessed using benthic field measurements and bleaching surveys. Maldivian coral recovery showed considerable spatial and taxonomic variability, with dominant taxa characterized by stress tolerance and several previously common taxa now still quite rare. Compared to other Indian Ocean islands, the Maldivian coral response was considerably more variable and complicated. The authors conclude that natural selective processes are in progress with responses showing potential for adaptation.

Author: McClanahan, T.R. and N.A. Muthiga
Year: 2014
View Abstract
Email for the full article: resilience@tnc.org

Marine Pollution Bulletin 80(1-2): 107-113

Share on FacebookTweet about this on TwitterEmail this to someone