Archives

Toxicopathological Effects of the Sunscreen UV Filter, Oxybenzone (Benzophenone-3), on Coral Planulae and Cultured Primary Cells and Its Environmental Contamination in Hawaii and the U.S. Virgin Islands

Managing exposure of corals to oxybenzone, a common ingredient found in sunscreen lotions, is critical for managing for coral reef resilience. A new study found that coral planulae exposed to oxybenzone became deformed and sessile, and had an increased rate of bleaching which increased with increasing concentrations, affecting coral recruitment and juvenile survival. Because oxybenzone is a photoxicant, high light levels at or near the surface of the water where planulae of broadcasting species spend 2-4 days before settling may place them at higher risk than was seen in this laboratory study. Water samples were also collected in the U.S. Virgin Islands and Hawaii to determine oxybenzone concentrations occurring around swimming beaches. In this study, cell death was seen in seven Indo-Pacific and Caribbean coral species at concentrations similar to the water samples taken. Caribbean species sensitivity to oxybenzone was similar to the model of coral tolerance to other stressors (Gates and Edmunds 1999)—boulder corals and other slow growing species have a higher level of tolerance to stressors. For management, the data from this study can help predict changes to coral reef community structure in places with significant oxybenzone exposure and can be integrated into reef resilience management plans.

Author: Downs, C. A., E. Kramarsky-Winter, R. Segal, J. Fauth, S. Knutson, O. Bronstein, F.R. Ciner, R. Jeger, Y. Lichtenfeld, C.M. Woodley, P. Pennington, K. Cadenas, A. Kushmaro, and Y. Loya
Year: 2015
View Full Article

Archives of Environmental Contamination and Toxicology. doi: 10.1007/s00244-015-0227-7

Share on FacebookTweet about this on TwitterEmail this to someone

It’s not loo late for coral reefs

In a new article published today in the world’s leading academic journal, Science, Mark Spalding, Senior Marine Scientist for The Nature Conservancy looks at the broad issues surrounding the current situation of coral reefs and highlights points of hope.

“There is growing concern around coral reefs,” said Spalding. “For decades they have had to survive a growing array of human threats and now climate change has added to this. It’s the new threat on the block and it’s a deep worry, but it is too early to proclaim the end of reefs.”

Many corals are showing some degree of adaptive capacity to both warming and to acidification, more than some scientists were expecting. Spalding notes that such adaptive capacity, alongside the natural resilience of reefs can enable them to recover even from quite severe perturbations. For example, most reefs in the British Indian Ocean Territory and the Seychelles, which lost virturally all their coral in 1998 due to warm-water induced coral “bleaching”, showed good recovery within a decade. Read more.

Share on FacebookTweet about this on TwitterEmail this to someone

Malaysia & Thailand – Disturbance Response


Temporary Reef Site Closures During Coral Bleaching Thermal Stress

Location
Malaysia (Kedah, Terengganu and Pahang states); Thailand (Trang, Satun, Chumphon, Krabi and Phnag Nga provinces)

The Challenge
From March to September 2010, a thermal stress event occurred across Southeast Asia. Satellite-based monitoring tools produced by NOAA’s Coral Reef Watch (CRW) program were used to describe thermal stress patterns in the region. These tools were used to help local agencies respond to the potential bleaching. Predicted coral bleaching was confirmed through in situ observations undertaken by the Department of Marine Park Malaysia (DMPM), Thailand’s National Parks, Wildlife and Plant Conservation Department (DNP), university researchers, industry partners, and other stakeholders.

Undertaking practical, timely management actions before and/or during thermal stress events can reduce negative impacts on corals and reef ecosystems. Such actions include restricting potentially stressful activities on the reef such as construction, water sports (e.g., diving, snorkeling), and fishing, before, during, and after a bleaching event. In addition, enhancing overall reef health and condition (resilience) can help corals to resist environmental stress and recover more easily.

Discussing initiatives to support ecological and social resilience, Gili Islands, Indonesia. © James Tan Chun Hong

Discussing initiatives to support ecological and social resilience, Gili Islands, Indonesia. © James Tan Chun Hong

Actions Taken
In Malaysia, initial reports by government, university, NGO, and industry stakeholders confirmed bleaching had affected 60-90% of corals in the region. In response, DMPM closed 12 out of 83 dive sites within Malaysian national marine parks to divers and snorkelers from July 2010 until the close of the tourist season in October 2010. The onset of the monsoon season extended this closure until early 2011. DMPM undertook consultation with key reef stakeholders and press releases by the Director General of DMPM publicly communicated the closures and the reasons for them. These were supported by comments from NGOs (including ReefCheck Malaysia), along with calls for research and action to enhance understanding of and protection for reefs.

In Thailand, thermal stress was greater than in Malaysia, and resulted in over 80% of corals impacted at all sites. In response, and following a recommendation from the Department of Marine & Coastal Resources (DMCR), the DNP closed dive sites in national parks in December 2010. Eighteen popular dive sites within seven of 26 national parks on both sides of the peninsula were closed for 6-18 months to allow coral damaged by bleaching to recover. During this period, public awareness of marine conservation was promoted through local media. In the Gulf of Thailand, bleaching impacts were lower and bleached coral became a tourist attraction which provided additional opportunities for outreach and education. In addition to the site closures, authorities monitored coral status during the closures, increased enforcement, and also increased anchoring sites at locations unaffected by the closures to reduce boats damage to reefs.

How successful has it been?
In Malaysia, DMPM surveys of affected reefs in October 2010 and in the early months of 2011 found that corals had mostly recovered, with only a loss of ~5% of corals. Based on these results, the temporary closures were officially lifted in June 2011 for the usual beginning of the tourist season.

In Thailand, averaged across all reef sites, less than 5% of the damaged coral had recovered by 2011. Site closures were therefore extended to 18 months at some sites. The amount of young coral found suggested that while reef recovery through recruitment was occurring in some areas; it was dependent on the health of upstream reefs which provided the necessary coral larvae for recovery. These results demonstrated the importance of considering the ecological connectivity between healthy and damaged sites to better understand recovery prospects and patterns.

Tourism industry responses to the closures in Thailand were varied. The Phang Nga Tourism Association sought to cooperate with government efforts to protect marine life and to encourage collaboration between government and private tourism operators. Phuket and Andaman diving communities expressed concern that the closures would lead to overcrowding at other popular sites outside marine parks, such as around Phuket. In response, efforts were made in some locations to cap tourist numbers and/or to limit visits to during high tides (to reduce accidental contact with corals). There was also concern regarding follow-on impacts of the closures on the tourism industry, such as reduced accommodation bookings. General consultation with industry partners and stakeholders continued through DMCR and DNP, including through engagement programs such as Strengthening Andaman Marine Protected Area Networks (SAMPAN) and in partnership with research organizations (e.g., the Phuket Marine Biological Centre).

Small group reporting on potential management actions during bleaching events. © James Tan Chun Hong

Stakeholder learning workshops were held in multiple locations in Malaysia, Thailand and Indonesia during 2013 to identify gaps in scientific knowledge and build capacity for supporting social and ecological resilience to future bleaching events. Assessing the effectiveness of closures during coral bleaching events on promoting coral survival and reef recovery was identified as a key future research task through this study. Workshop participants acknowledged that selective site closure or reduction in usage could be beneficial for reefs, but also recommended implementing restrictions other than site closures during bleaching events. Other key responsive actions identified through the workshops included: (i) improving engagement, coordination, and communication between stakeholders about coral reef management issues; (ii) implementing education and outreach programs to raise awareness, particularly for snorkelers and divers; (iii) enforcing existing rules, particularly those related to marine parks and fisheries; (iv) improving communication and coordination during bleaching events by developing and/or socializing Bleaching Response Plans and forming Response Committees; and (v) developing and implementing codes of conduct and certification programs for divers, dive operators, snorkel guides, and tourism businesses.

Lessons Learned and Recommendations

  • Establish and maintain effective stakeholder networks. Having these in place prior to disturbance events can establish trust relationships if/when responsive actions become necessary. In the event of mass coral bleaching, coherent and guided actions are needed (e.g., through the Malaysian National Coral Bleaching Action Committee that was established with various stakeholders following the 2010 event or through Thailand’s National Coral Reef Management Plan).
  • Use predicted bleaching conditions from NOAA Coral Reef Watch tools to make proactive management decisions and support communication efforts.
  • Prevent coral damage from snorkeling in the shallow reefs before, during and after disturbance events. This may involve establishing alternative sites or only visiting reefs during high tides.
  • If temporary closure of diving sites is deemed necessary, clear and early communication of actions with industry stakeholders is important. Ongoing communication through any period of closure is also important; this includes informing the public and tourists concerning status of coral bleaching.
  • Reduce sediment load onto coral reefs from coastal development, wastewater discharge from boats and land-based activities.
  • Training and capacity building (e.g., in appropriate coral bleaching survey techniques) is important for local marine park rangers and other specialist monitoring groups.
  • Together with network partners, conduct research and monitoring for coral conservation and restoration. For example, this can inform the success of temporary closures on coral health.
  • Develop effective mechanisms for response project implementation under national coral reef management plans. This may include providing sufficient capacity and funding needs to relevant government agencies for monitoring and enforcement.
  • Support multi-national reef conservation efforts to enhance recovery of disturbed reefs.

Funding Summary
Rapid response assessment (funding sources and partners):
CSIRO Wealth from Oceans Flagship
NOAA Coral Reef Watch Program
NOAA Coral Reef Conservation Program
Australian Government’s Department of Environment, Water, Heritage and the Arts (now the Department of the Environment)
The Nature Conservancy
Universiti Malaysia Terengganu
Prince of Songkla University
Macquarie University

Stakeholder learning workshops (funding sources and partners):
Asia-Pacific Network for Global Change Research
CSIRO Wealth from Oceans Flagship
NOAA Coral Reef Watch Program
NOAA Coral Reef Conservation Program
Reef Check Malaysia
Universiti Malaysia Terengganu
Department of Marine Park Malaysia
Prince of Songkla University
WWF-Thailand
Department of Marine and Coastal Resources, Thailand
J.W. Marriott, Phuket, Thailand
Reef Check Indonesia
Coral Reef Alliance
Conservation International Indonesia
Wildlife Conservation Society – Indonesia

Lead Organizations
Department of Marine Park Malaysia
National Parks, Wildlife and Plant Conservation Department, Thailand
Department of Marine & Coastal Resources, Thailand
Universiti Malaysia Terengganu

Partners
NOAA Coral Reef Watch
Reef Check Malaysia

Resources
Top dive spots closed due to coral bleaching

Coral bleaching in Thailand: 18 dive sites closed to save coral reefs

Dive sites to remain closed so bleached coral may recover

Building Capacity for Socio-ecological Resilience to Coral Bleaching Events & Climate Change in Indonesia, Malaysia, and Thailand

First observed severe mass bleaching in Malaysia, Greater Coral Triangle

South-East Asia Coral Bleaching Rapid Response (pdf)

Impacts of coral bleaching, recovery and management in Thailand (pdf)

Share on FacebookTweet about this on TwitterEmail this to someone

Behind-the-scenes on Project REGENERATE

Photo © Project REGENERATE

In recent years, the IUCN has increased its engagement in the Maldives, a group of islands in the Indian Ocean, with the development of the IUCN Maldives Marine Projects program, which aims to support the Government in addressing the environmental priorities and challenges that the Maldives faces. Project REGENERATE (Reefs Generate Environmental and Economic Resilience in Atoll  Ecosystems), a major project under this program, supports the sustainable management of coastal resources in the Maldives, particularly coral reefs, in order to build economic, social, and environmental resilience to the adverse effects of climate change. One major research activity of the project is a two-leg scientific expedition to investigate coral reef biodiversity and resilience and provide baseline ecological data for the Maldives.

The first leg of the expedition, in collaboration with the University of Queensland and the Catlin Seaview Survey, employed high tech cameras to collect data from eight atolls. The second leg of the research cruise was comprised of 17 researchers, representing  universities, research and environmental institutions from around the world, and focused on North Ari (Alifu Alifu) Atoll in the Maldives. The team documented fish abundance and species structure, benthic composition, coral population demographics, coral bleaching and disease, mobile invertebrate species, and foramnifera health. A key strategy of the project was to build local capacity by training citizen scientists in national monitoring protocols. Citizen scientists from Alifu Alifu Atoll, the capital Male and as far afield as Colombo, Sri Lanka, joined the research team, received training, and helped to collect data for their home reef. The data collected will help to assess the resilience of the coral reef ecosystem. It will also help to assess how population density affects reef health. Such assessments address important data gaps in the region and are critical in a country highly vulnerable to climate change, and also dependent on its world-renowned coral reefs and the resources that they provide. This information, combined with data from future monitoring assessments, will inform policy and management decisions in the region.

The Reef Resilience Team got a “behind-the-scenes” glimpse into this expedition from two crew members: Zach Caldwell, The Nature Conservancy’s Dive Safety Officer, and Amir Schmidt, IUCN Maldives Marine Projects Field Officer.

Reef Resilience (RR): Can you tell us a little bit about how this project came about?

Zach Caldwell (ZC): There was a predicted sea temperature rise this year in the waters around the Maldives. Because we know that corals are more susceptible to bleaching and disease when thermally stressed, this created a timely opportunity to address pressing research questions on the resilience of corals in the Maldives. There seems to be quite a void in quantitative information on coral reefs in the Maldives, so the approach was to organize a comprehensive team to ensure that all necessary information was collected to answer the questions being asked.

RR: What was your role in the expedition?

Photo © Project REGENERATE

ZC: I was a member of the fish team. I worked directly with three other researchers to count and size reef fishes found along our transect line. I also worked directly with Scripps Institution of Oceanography to collect benthic data. We set up 10m x 10m plots on the seafloor and took a sequence of photos of these plots. The photos were later stitched together to make a detailed map of the sea floor. This provides us with a large permanent record of the community structure in that area at that time.  We complimented these data with fish surveys to compare fish abundance with bottom composition.

I conduct similar coral reef and fish surveys in Hawai‘i to provide our community partners with information on the health of their reefs to help inform community-based management. The Nature Conservancy Hawai‘i is currently working with 19 community partners across the State. As a research team, it’s important that we stay up-to-date on the latest monitoring protocols and also contribute to collaborative research projects like Project REGENERATE.

Amir Schmidt (AS): I had three roles to play during the expedition. My first duty was to make sure that the research team was sampling the right places at the right times. With dozens of divers and three dives per day, we had to stick to a tight time schedule! My second role was to oversee the citizen science component of the expedition. This included four local citizen scientists – two people from an environmental NGO, an assessor for Green Fins Maldives, and a representative from the Environmental Protection Agency Maldives – who helped to collect data on fish and benthic life forms, such as corals, sponges, and algae during the whole expedition and eleven community members and resort staff who joined the cruise for a day, receiving on board and in water training on monitoring protocols focused on benthic communities.

RR: How did the idea  to include local community members and scientists in the expedition come about, i.e. what was your motivation for this aspect of the project?

Training

Photo © Project REGENERATE

AS: Our goal for including community members in the expedition was to identify who locally is interested in coral reef monitoring, in order to build a network of citizen scientists to monitor our marine resources and later use this information to create a management plan.

Usually we go to the islands and conduct monitoring workshops there. This time, we took advantage of the opportunity to host the workshops on the research vessel. In addition to the training, the community members got to see what daily life on a research expedition looks like. The Maldivian island communities are small and because transportation in between them is limited, interactions of this kind are extremely rare. I think it was interesting for both the community members and researchers, and helped them to see the bigger picture.

Log on to the Network Forum to read the rest of the interview.

Share on FacebookTweet about this on TwitterEmail this to someone

U.S. Virgin Islands – Disturbance Response


The U.S. Virgin Islands BleachWatch Program

Location
U.S. Virgin Islands

Bleaching Coral. Photo © TNC

Bleaching Coral. Photo © TNC

The Challenge
In 2005, coral reefs throughout the tropical Atlantic and Caribbean were severely impacted by a mass coral bleaching event triggered by prolonged exposure to above normal water temperatures. The bleaching observed in 2005 caused some direct mortality and was also followed by an increased incidence of disease outbreaks. Multiple studies reported this pathway of bleaching followed by increased incidence of disease, with corals varying in degree of mortality resulting from both stresses. This event caused resource managers to realize a formal plan was needed to better respond to coral bleaching events and communicate with stakeholders.

Actions Taken
The U.S. Virgin Islands (USVI) BleachWatch Program was developed to assess and monitor coral bleaching primarily from warm water events and document the distribution, severity and impacts of bleaching to reefs and reef communities. The program was developed by adopting and modifying strategies from the Great Barrier Reef Marine Park and Florida’s successful BleachWatch programs.

BleachWatch BCD Tag

BleachWatch BCD Tag. Photo © TNC

Program Development
To guide the development of bleaching response efforts a steering committee was formed. The committee was composed of reef experts from local and federal government resource agencies, non-profit organizations, and academia. The Bleachwatch Program is one of five main components of the US Virgin Islands Reef Resilience Plan (VIRRP), a larger planning effort to conserve coral reefs in the USVI and promote coral reef resilience.

The VI Reef Resilience Plan and steering committee were necessary to generate and document agreed upon protocols between key stakeholders for the Bleachwatch Program. The Plan provides details on the purpose, response activities and triggers, monitoring protocols and community volunteer training. See further details of the plan below:

Assessment and Monitoring
NOAA’s Coral Reef Watch (CRW) Program, provides current reef environmental conditions to identify areas at risk for coral bleaching, and is used to prepare and respond to mass bleaching events. The following CRW products are monitored by The Nature Conservancy (TNC) in the USVI to provide a early warning system: Alert Areas, Hot Spots (current thermal stress), Degree Heating Week (DHW), Sea Surface Temperature (SST) and Sea Surface Temperature Anomaly (SSTA). These products are available free to researchers and stakeholders to understand and better manage coral bleaching in the region.

USVI Bleachwatch response activities are directly based on advisories and alert levels received from NOAA along with local temperature data. When a Bleachwatch alert is received from CRW by TNC, volunteers are mobilized. They are the first eyes in the water, reporting basic observations such as presence or absence of bleaching. Volunteers are asked to collect data for any areas they visit and also asked to survey specific sites of interest such as coral nursery outplantings and sites assessed with high resilience. If a more severe event takes place, TNC alerts the steering committee and the scientific community. During this time, volunteers might continue to assist with monitoring, but data is more specific and collected at a finer scale to estimate of the percentage of coral reef affected.

Alerts are issued by NOAA only when a station experiences a change in thermal stress level. Table 1 presents a summary of the advisories/alert levels from NOAA monitored by TNC, definitions of the each levels and the response of the USVI Bleachwatch program to each advisory.

BleachWatch Table 1

Community Volunteer Training
Individual volunteers from the public are a main component of the USVI Bleachwatch Program and contribute to the assessment of coral bleaching. BleachWatch assessment methods are taught through in-person training sessions (Since 2013, 4 volunteer trainings have been conducted in St. Croix and St. Thomas). Training sessions are 1 hour in length and focus on the identification of corals reef, fishes, and other creatures. Differences between bleaching, disease and mortality are discussed. Each session also includes training on survey methods, materials, methodology and guidelines for submitting data. A USVI Bleachwatch website was developed to communicate with volunteers and the public. Volunteers have the option of submitting reports through an online datasheet, by email or mail.

USVI Bleachwatch Volunteer Survey Methodology
Conduct a 15 minute roving snorkel or dive pausing each 3 minutes to document a “survey station”. At each survey station:

  • Take a photo or record data for a 1 m2 surface area of the reef
  • Estimate percent coral coverage and percent bleaching of coral
  • Report observations of the absence of bleaching
  • Record other findings such as number and types of herbivorous fishes, number and types of invertebrates and types of diseases
  • Record your findings on the VIRRP BleachWatch Reef Assessment Data Sheet

Materials Needed

  • Diving or snorkeling equipment
  • Underwater clipboard or slate
  • Underwater datasheet and pencils
  • Coral Watch Bleaching Cards
  • Underwater digital camera or video camera – if available (optional)

How Successful Has it Been?
Since the launch of the USVI BleachWatch Program over 35 individuals on St. Croix and St. Thomas have been trained to identify and quantify the severity of bleaching. In 2014 the program protocols were tested for the first time. A Bleachwatch alert was sent out and volunteers were successfully mobilized to survey sites for bleaching. Over 30 reports were received and, fortunately, no bleaching was observed. The secondary response components of the program have been fully tested, as there has not been significant bleaching of corals in the territory since 2005.

The USVI Bleachwatch Program has resulted in increased support and capacity for resource managers to identify and respond to bleaching events. Volunteers are functioning as an early warning system for bleaching events. Managers and the scientific community have a clear plan for assessment and response to bleaching events to inform the proactive management of coral reefs during severe bleaching events.

Lessons Learned and Recommendations
The most important lesson learned is to be mindful that not all volunteers will collect data uniformly. In some instances volunteers are comfortable only sharing whether or not bleaching was observed, which is also important information. It is important to be mindful of volunteers’ time and welcome any level of information that they are willing to share.

Here are some additional recommendations to consider when developing a program:

  • Have a point person in place to keep program organized and lead communication with steering committee members and volunteers. During the development of the program it is critical to determine who can serve as point of contact for the program, this requires staff time for coordination. Consider where point of contact responsibilities can be integrated into existing or complementary efforts for example coral reef monitoring efforts.
  • Clearly defining benefits, incentives, and creating a feedback loop to the volunteers is important.
  • Be flexible and realistic about of the quality of data you hope to receive and the format in which you will receive it from the volunteers – some will fill out the entire form, some will just send an email.
  • Provide other alternatives and options for reporting such as a mapping tool to make it easier for people to report the event.
  • Group volunteer time effort – consider expanding the topics included in a training to include other issues affecting coral reef health that volunteers are interested in reporting for example; invasive species, grounding damages.

Funding Summary
National Oceanic and Atmospheric Administration Coral Reef Conservation Program

Lead Organizations
The Nature Conservancy

Partners
The Nature Conservancy
The University of the Virgin Islands Center for Marine and Environmental Studies

Share on FacebookTweet about this on TwitterEmail this to someone

Biogeography And Change Among Regional Coral Communities Across The Western Indian Ocean

Following the major 1998 coral bleaching event between 2004 and 2011, 291 coral sites from 11 Western Indian Ocean (WIO) countries were surveyed to evaluate regional biogeographic patterns of coral communities along latitudinal gradients and in relation to biogeography and fisheries management. Coral reef abundance, biodiversity, and susceptibility to bleaching were assessed during that period to develop an extensive database on coral reef communities and researchers aimed to evaluate possible impacts such as fishing and fishing closures on reef patterns and status. Patterns show that coral communities are influenced by large-scale interactions between biogeographic factors and temperature abnormalities but not so much by fisheries management. All coral reefs in the WIO are experiencing climate change and coral bleaching since the early 1980s, but at variable rates, timing and scale depending on the geography. The region was characterized by a complexity of a large number of significant interactions among variables tested. The northern Mozambique Channel demonstrated the strongest signs of resilience to climate disturbances.

Author: McClanahan, T.R., M. Atewberhan, E.S. Darling, N.A.J. Graham, and N.A. Muthiga
Year: 2014
View Full Article

PLoS ONE 9(4): e93385. doi: 10.1371/journal.pone.0093385

Share on FacebookTweet about this on TwitterEmail this to someone

Community Change and Evidence For Variable Warm-Water Temperature Adaptation Of Corals In Northern Male Atoll, Maldives

This study is a descriptive analysis of coral reef communities in North Male, Maldives seven years after the major 1998 coral bleaching event with the goal of evaluating ongoing changes and ability for adaptation. The study looked at coral community composition, recruitment community, evidence for recovery and responses to corals to a subsequent thermal anomaly in 2005. Eleven shallow reef areas consisting of hard calcium carbonate were assessed using benthic field measurements and bleaching surveys. Maldivian coral recovery showed considerable spatial and taxonomic variability, with dominant taxa characterized by stress tolerance and several previously common taxa now still quite rare. Compared to other Indian Ocean islands, the Maldivian coral response was considerably more variable and complicated. The authors conclude that natural selective processes are in progress with responses showing potential for adaptation.

Author: McClanahan, T.R. and N.A. Muthiga
Year: 2014
View Abstract
Email for the full article: resilience@tnc.org

Marine Pollution Bulletin 80(1-2): 107-113

Share on FacebookTweet about this on TwitterEmail this to someone

New and improved Network Forum

The Reef Resilience Network has launched a new and improved online discussion forum!

Now part of the Reef Resilience website, this interactive online community is a place where coral reef managers and practitioners from around the world can connect and share with others to better manage marine resources.

If you work to protect, manage, or promote coral reefs please join the conversation: www.reefresilience.org/network

Share on FacebookTweet about this on TwitterEmail this to someone

New Reef Resilience Online Course Launched

The new online course Advanced Studies in Coral Reef Resilience is designed to provide coral reef managers and practitioners in-depth guidance on managing for resilience. This free course incorporates new science, case studies, and management practices described in the Reef Resilience Toolkit.

The course includes six modules that discuss local and global stressors affecting coral reefs, guidance for identifying coral reef resilience indicators, design principles for resilient MPA networks, methods for implementing resilience assessments, and important communication tools for managers. Course participants can choose to complete any or all lessons within course modules. Read more.

Share on FacebookTweet about this on TwitterEmail this to someone

Contrasting Patterns of Coral Bleaching Susceptibility in 2010 Suggest an Adaptive Response to Thermal Stress

Guest et al. (2012) examine the bleaching and mortality responses of corals at sites in Southeast Asia with different thermal histories during a large-scale bleaching event in 2010 to explore whether corals have the capacity to adapt to elevated sea temperatures. They also assess whether reefs in more thermally variable environments bleach less severely during heat stress events. They found increases in thermal tolerance on reefs that previously experienced major bleaching with the most susceptible species exhibiting the greatest increases in thermal tolerance. They also demonstrated that corals generally bleached less severely at locations where temperature variability has been greater and warming rates lower over the last 60 years. These results are important because they suggest that locations that are more resistant to bleaching can be identified from analyzing their thermal histories, and such sites could be considered priorities for protection in marine protected area (MPAs). These results add to a growing body of evidence suggesting that the capacity for adaptation and acclimatization in corals has been underestimated which is good news for coral reefs.

Author: Guest, J.R., A.H. Baird, J.A. Maynard, E. Muttaqin, A.J. Edwards, S.J. Campbell, K. Yewdall, Y.A. Affendi, and L.M. Chou
Year: 2012
View Full Article

PLoS ONE 7(3): e33353. doi:10.1371/journal.pone.0033353

Share on FacebookTweet about this on TwitterEmail this to someone