Response of a Fringing Reef Coastline to the Direct Impact of a Tropical Cyclone

Abstract: Tropical cyclones generate extreme hazards along coastlines, often leading to losses of life and property. Although coral reefs exist in cyclone-prone regions globally, few studies have measured the hydrodynamic conditions and morphological responses of reef-fringed coastlines to tropical cyclones. Here, we examine the impact of Tropical Cyclone Olwyn on a section of Australia’s largest fringing reef (Ningaloo Reef) using in situ wave and water level observations, topographic surveys, and numerical modeling. Despite forereef significant wave heights reaching 6 m and local winds of 140 km h-1, average beach volume change was only -3 mm-1. The results indicate that this erosion was due to locally generated wind waves within the lagoon rather than the offshore waves that were dissipated on the reef crest. A comparison of these volume changes to observations of tropical cyclone impacts along exposed sandy beaches quantitatively demonstrates the substantial coastal protection reefs can provide against extreme storms.

Authors: Cuttler, M. V., J.E. Hansen, R.J. Lowe, and E.J. Drost
Year: 2018
View More

Limnology and Oceanography Letters 3(2).

Share on FacebookTweet about this on TwitterEmail this to someone

Adaptation Design Tool Online Course Announcement

Course banner

Ready to get practical with adapting your management activities in light of climate change, but wondering how to organize what can be a complicated ‘adaptation design’ process? A new course, Corals & Climate Adaptation Planning: Adaptation Design Tool, can help you as a coral reef manager incorporate climate-smart design into your management activities.

This month-long mentored training (8-10 hour time commitment) features interactive lessons, hands-on exercises, webinars, and interaction with experts and other managers. Using real-world examples, you will be guided through the process of incorporating climate change adaptation into a management plan, first using existing planned actions as a starting point, and then through the development of additional climate-smart strategies as needed.

The lessons are based on the user guide, Adaptation Design Tool: Corals & Climate Adaptation Planning, which was developed as a collaborative project of the Climate Change Working Group of the interagency U.S. Coral Reef Task Force and The Nature Conservancy.

This course was designed for coral reef managers but is also fully transferable for use with other systems and applications, such as wetland and watershed management planning. Everyone is welcome!

Important Dates:

  • Course Dates: October 16 – November 17, 2017
  • September 25 – October 16: Course Orientation and Introductory Webinar registration
  • October 16: Course Orientation and Introductory Webinar – Introduction to the Adaptation Design Tool (1 hour)
  • October 17 – November 16: Complete four self-paced lessons and learning exercises (approximately 6 hours)
  • November 6: Webinar 2 – Developing Climate-Smart Design Considerations for Existing Conservation and Management Actions (1.5 hours)
  • November 17: Webinar 3 – Expanding the List of Adaptation Options & Course Conclusion (1 hour)


To Register:
The course will open with an orientation webinar held on October 16 at 10:00 AM HST / 4:00 PM ESTRegister here for the Orientation Webinar which will cover how to enroll in the course. If you are not able to take this mentored course, there is a self-study version available here (Note: you will need to create a user account to access the self-study course). If you have questions, please contact us at

Share on FacebookTweet about this on TwitterEmail this to someone

Toxicopathological Effects of the Sunscreen UV Filter, Oxybenzone (Benzophenone-3), on Coral Planulae and Cultured Primary Cells and Its Environmental Contamination in Hawaii and the U.S. Virgin Islands

Managing exposure of corals to oxybenzone, a common ingredient found in sunscreen lotions, is critical for managing for coral reef resilience. A new study found that coral planulae exposed to oxybenzone became deformed and sessile, and had an increased rate of bleaching which increased with increasing concentrations, affecting coral recruitment and juvenile survival. Because oxybenzone is a photoxicant, high light levels at or near the surface of the water where planulae of broadcasting species spend 2-4 days before settling may place them at higher risk than was seen in this laboratory study. Water samples were also collected in the U.S. Virgin Islands and Hawaii to determine oxybenzone concentrations occurring around swimming beaches. In this study, cell death was seen in seven Indo-Pacific and Caribbean coral species at concentrations similar to the water samples taken. Caribbean species sensitivity to oxybenzone was similar to the model of coral tolerance to other stressors (Gates and Edmunds 1999)—boulder corals and other slow growing species have a higher level of tolerance to stressors. For management, the data from this study can help predict changes to coral reef community structure in places with significant oxybenzone exposure and can be integrated into reef resilience management plans.

Author: Downs, C. A., E. Kramarsky-Winter, R. Segal, J. Fauth, S. Knutson, O. Bronstein, F.R. Ciner, R. Jeger, Y. Lichtenfeld, C.M. Woodley, P. Pennington, K. Cadenas, A. Kushmaro, and Y. Loya
Year: 2015
View Full Article

Archives of Environmental Contamination and Toxicology. doi: 10.1007/s00244-015-0227-7

Share on FacebookTweet about this on TwitterEmail this to someone

Coral Reef Disturbance and Recovery Dynamics Differ Across Gradients of Localized Stressors in the Mariana Islands

Disturbance and recovery patters of coral reefs in the Commonwealth of the Northern Mariana Islands were studied over a 12-year period, including Crown of Thorns Starfish (COTS) densities, localized stressors, and natural disturbances such as tropical storms. COTS densities caused significant coral decline, however, the ability of reefs to recover was most influenced by localized stressors, in particular, grazing urchin densities and herbivore sizes. Reefs on Saipan had the highest disturbance impacts, with smaller fish sizes, grazing urchins, and water quality, even though they had the most favorable geological features for coral growth. These reefs are also subject to reef-based tourism, which is important to CNMI’s economy and thus deserves a hard look at how to improve fish assemblages, urchin populations, and local water quality concerns.

Author: Houk, P., D. Benavente, J. Iguel, S. Johnson, and R. Okano
Year: 2014
View Full Article

PLoS ONE 9(8): e105731. doi:10.1371/journal.pone.0105731

Share on FacebookTweet about this on TwitterEmail this to someone

The Nature Conservancy in Cuba: A major step in protecting Caribbean resources

Dr. Bob Steneck and Ramon Lloveras TNC Caribbean Program Trustees snorkeling off of Playa Girón, Cuba, viewing healthy endangered Elkhorn coral stands. © Alex Quintero, Director of Operations, North America Region.

Dr. Bob Steneck and Ramon Lloveras TNC Caribbean Program Trustees snorkeling off of Playa Girón, Cuba, viewing healthy endangered Elkhorn coral stands. © Alex Quintero, Director of Operations, North America Region.

Roughly the size of Florida, Cuba is the most ecologically diverse island in the Caribbean with more than 10,000 endemic plant and animal species. The country’s coral reefs span 1000 sq. miles and represent a third of all reefs in the insular Caribbean. Cuba’s healthy marine ecosystems are crucial for regional coral larvae dispersal and fisheries production that not only benefit the Caribbean region, but also the southeastern United States.

The Nature Conservancy has partnered with Cuban conservation agencies for more than 20 years, providing trainings such as protected area management and planning, GPS and GIS, coral reef monitoring, climate adaptation, and sustainable tourism that otherwise would not be available. During this time, the Conservancy has also mapped coral reefs, sea grasses, and mangrove forests within protected areas – these maps have been used to facilitate monitoring and targeted protection of these high-biodiversity locations. The Conservancy’s commitment to Cuba has made us one of the few organizations that have an excellent active working relationship with conservation agencies in Cuba. The Conservancy supports conservation agencies in Cuba by responding to their existing commitments and training government and NGO staff in skills necessary to advance marine and terrestrial conservation. Through funding from the China Global Conservation Fund and private donors there are currently plans to develop a comprehensive conservation blueprint for the island using new mapping techniques to improve existing data and refine it through expert knowledge. These products will be integrated within an information system to evaluate conservation and development scenarios—providing guidance about habitat protection, natural resource development and mitigation.

Dr. Luis Solórzano, Executive Director of the Caribbean Program, Mr. Raimundo Espinoza, Program Manager for Cuba, and Dr. Steve Schill, Senior Scientist for the Caribbean Program have all played integral roles in advancing collaborations and conservation efforts in Cuba. We asked them a few questions about The Nature Conservancy’s work in the country and here’s what they had to say:

RR: What do you see as the greatest challenges for Cubans working in coral reef conservation?
Mr. Raimundo Espinoza: Cuban conservationists are very passionate, creative, and have high academic standards. However, limitations with everyday technology, such as slow Internet speeds and restrictions on software needed for scientific analysis, are challenges they face on a daily basis. Specifically for coral reefs, Cuban reefs represent over one third of all reefs in the insular Caribbean presenting challenges for monitoring and management of such a vast area. Nonetheless, Cuba has some of the more pristine reef systems in the Caribbean. The lack of massive coastal development and low nutrient and sediment flows onto Cuban reefs provide a hypothesis as to why these systems have been able to maintain their integrity compared to many others degrading systems in the Caribbean.

A potential threat of increased development will likely be a challenge in keeping Cuban coral reef systems healthy. We are currently working with Cuban conservation agencies to identify the best way to achieve coral reef conservation and work towards maximizing the ocean’s benefits to people, while maintaining healthy marine habitats.

RR: What is TNC doing to help address these challenges?
Mr. Raimundo Espinoza: We currently have two major efforts underway. The first is the Cuba Conservation Blueprint, which will be undertaken in collaboration with Cuban conservation agencies. The blueprint will guide efforts to focus conservation in areas of high ecological value, which will help Cuba make informed decisions about future development in ways that will promote sustainable use without sacrificing ecological integrity. In addition, the Conservancy will be building capacity for enhanced coral management and restoration in Cuba by establishing coral nurseries in partnership with the Cuban National Center for Protected Areas at the Elemento Natural Destacado- Sistema Espeleolacuste, a Protected Area within the Ciénega de Zapata ecosystem. We are also providing coral reef managers with current science, best practices, and tools necessary to establish and manage Cuba’s first coral nursery.

RR: What are the expected outcomes of the Cuba Conservation and Development Blueprint?
Dr. Steve Schill: The Cuba Conservation Blueprint will provide an improved and updated spatial database of terrestrial, freshwater, and marine habitats as well as socioeconomic activities throughout Cuba. These features will be consistently mapped at much greater accuracy than previous datasets that are outdated, inaccurate, or mapped at inadequate scales. Through this process, we will identify protection gaps that will ultimately lead to the design of an optimal protected area network that efficiently meets identified conservation goals for terrestrial, freshwater, and marine systems.

This improved network of protected areas will help to preserve ecological function and long-term viability of these systems throughout Cuba. In addition, we will host a series of workshops and meetings to educate, raise awareness and build common consensus for a smart conservation agenda. This agenda will prioritize and guide conservation efforts, helping the government make informed and smarter choices about future development in ways that will promote sustainable use without sacrificing ecological integrity.

RR: How is The Nature Conservancy’s work in Cuba important for conservation efforts in the Caribbean Region?
Dr. Luis Solórzano: Cuba is the largest island in the Caribbean and one of the top 20 largest islands worldwide and therefore has one of the highest conservation values in the region. The island hosts high levels of endemic species, is important for migrations of birds from North America, and holds a healthy genetic bank of marine species for the region. In addition, Cuba is well preserved due to low-impact agriculture and development and low human population density.

With changes in the U.S.A. – Cuba diplomatic relations, a potential for increased economic activities could fuel changes in land-use in sectors such as agriculture, oil, mining, tourism, and immigration. The Conservancy is working to protect and conserve the Caribbean’s natural resources and so any regional conservation goal and strategy need to include Cuba to secure biological representation and biogeographical connectivity. We will work with Cuban partners to complete the conservation blueprint for the country, and support the design and implementation of a network of effectively managed protected areas. The goal of these efforts is to capture the biological richness of Cuba’s marine and terrestrial ecosystems and engage with different sectors to achieve development goals, while preserving the environmental integrity and the country’s natural richness. Cuba has the potential to become an example of true sustainable development in the 21st century, where human development needs and aspirations are met without eroding the life support systems that maintain us all.

Log on to the Network Forum to ask Mr. Raimundo Espinoza questions or share your comments about marine conservation efforts in Cuba.

Share on FacebookTweet about this on TwitterEmail this to someone

Sediment And Turbidity Associated With Offshore Dredging Increase Coral Disease Prevalence on Nearby Reefs

This study provides the first empirical evidence linking turbidity and sedimentation with elevated levels of coral disease and other indicators of compromised health in situ. The study was conducted in Australia’s Montebello and Barrow Islands, encompassing marine managed areas characterized by low human use, minimal development/industry and strict management. Detailed coral health assessments were conducted following the completion of an 18-month dredging project in 11 sites of varying sedimentation exposure. Every hard coral colony of 5 cm or greater in diameter along transects was surveyed to determine and classify disease presence, as well as other signs of compromised coral health. It was shown that coral reef exposure to the sediment plume was the main driver of higher levels of diseases and other indicators of degraded coral health. White syndromes (WS) disease prevalence strongly corresponded to high sedimentation and turbidity levels indicating the importance of water quality on coral disease and the need to manage coastal development to maintain nearshore reef health.

Author: Pollock, F.J., J.B. Lamb, S.N. Field, S.F. Heron, B. Schaffelke, et al.
Year: 2014
View Full Article

PLoS ONE 9(7): e102498. doi: 10.1371/journal.pone.0102498

Share on FacebookTweet about this on TwitterEmail this to someone